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Abstract. Accurate cryptocurrency price forecasting is crucial due to the significant financial 

implications of prediction errors. The volatile and non-linear nature of cryptocurrencies 

challenges traditional statistical methods, revealing a gap in effective predictive modelling. This 

study addresses this gap by examining the impact of activation functions on neural network 

models during critical economic periods, specifically aiming to determine how optimising 

activation functions enhances accuracy in neural network models, including RNN, GRU, 

LSTM, and hybrid architectures. Using data from January 2016 to June 2022—encompassing 

stable periods, the COVID-19 pandemic, and the onset of the 2022 Ukraine conflict—we 

analysed price trends under various market conditions. Our methodology involved testing three 

activation functions (ReLU, sigmoid, and Tanh) across these models. Both univariate and 

multivariate analyses were conducted, with the latter incorporating additional metrics such as 

opening, highest, and lowest prices. The results indicate that optimising activation functions 

enhances prediction accuracy. Among the models, GRU demonstrated the highest accuracy, 

whereas RNN was the least efficient. Multivariate models outperformed univariate ones, 

highlighting the benefits of incorporating comprehensive data. Notably, the Tanh activation 

function led to the greatest improvements, particularly in underperforming models such as 

RNN. These findings underscore the critical role of activation function selection in enhancing 

the predictive power of neural networks for cryptocurrency markets. Optimising activation 

functions can lead to more reliable forecasts, facilitating better trading decisions and risk 

management. This study highlights activation functions as key parameters in neural network 

modelling, encouraging further exploration. Future research could investigate different 

economic periods and cryptocurrency behaviours to assess model robustness. Additionally, 

examining a broader range of cryptocurrencies may reveal whether the benefits of activation 

function optimisation are consistent across various assets. Incorporating external factors such 

as macroeconomic indicators or social media sentiment could further enhance models and 

improve forecasting accuracy. 
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1. Introduction 
 

Financial markets have undergone significant transformation, driven by globalisation and 

digitalisation, with new products and services emerging over the past several decades. 

Cryptocurrencies, one of these innovations, have arisen as a new asset class and are increasingly 

popular with investors [1,2]. Bitcoin, introduced in 2009, is the most prominent cryptocurrency, 

followed by Ethereum and Litecoin. Since that time, three major advances in cryptocurrency 

development have occurred: altcoins (essentially copies of Bitcoin), stablecoins (which are 

pegged to national currencies), and cryptocurrency platforms that enable application 

development [3]. Cryptocurrencies are classified as either coins or tokens, depending on 

whether they are built on their own blockchain or an existing one [4]. While the coin/token 

distinction may not directly affect trading mechanics, it can influence market behaviour and 

credibility, as coins may be perceived as more independent and technologically robust than 

tokens. 

 

In this study, we aim to improve price forecasts for three leading cryptocurrencies: Bitcoin, 

Ethereum, and Litecoin. The period analysed, from 1 January 2016 to 30 June 2022, 

encompasses significant economic epochs, such as the 2018 period of calm, the COVID-19 

pandemic in 2020, and the first months of the conflict in Ukraine (2022). These timeframes 

were chosen to represent both volatile and stable economic conditions, providing a 

comprehensive basis for our analysis. Given the relatively recent development of 

cryptocurrencies, their price data spans a shorter timeframe than traditional assets, hence the 

limited duration under investigation. 

 

Traditional statistical methods struggle with the non-linear nature of cryptocurrency markets, 

making machine learning models more appropriate for forecasting despite the limited insight 

they offer into the relationship between variables [5]. In this study, we utilise several neural 

network models—Simple Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and 

Long Short-Term Memory (LSTM)—as well as hybrid models (LSTM-GRU, RNN-LSTM) to 

evaluate their performance in predicting cryptocurrency prices. The mean absolute percentage 

error (MAPE) metric is employed to assess the accuracy of the models. 

 

Activation functions are crucial to improving the predictive power of neural networks by 

enabling the modelling of complex, non-linear relationships [6–9]. In this paper, we explore the 

impact of three commonly used activation functions—Rectified Linear Units (ReLU), sigmoid, 

and hyperbolic tangent (Tanh)—on the performance of the models above. By comparing the 

outcomes of using these activation functions, we aim to assess how optimisation of these 

functions can lead to better predictions. 

 

The remainder of the paper is organised as follows: In Section 2, we provide a comprehensive 

literature review of previous studies on cryptocurrency price prediction using machine learning 

models. Section 3 details the data and methods used in our study, including descriptions of the 

neural network models and activation functions. Section 4 presents the results of our analyses 

and discusses the findings in the context of existing literature. Finally, Section 5 concludes the 

paper with a summary of our key insights and suggests directions for future research. 
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2. Literature Review 

 

Several studies have explored the efficacy of machine learning models for predicting 

cryptocurrency prices, focusing on different methodologies and datasets. Sun and colleagues 

[10] studied the trends of 42 different cryptocurrencies between January and June 2018 using 

the Light Gradient Boosting Machine (LightGBM), Support Vector Machine, and Random 

Forest algorithms. The model specifications also used 40 different feature variables. It was 

found that LightGBM outperformed the other two models in terms of robustness. Wang et al. 

[11] investigated the predictability of 12 different cryptocurrency returns between August 2017 

and March 2021 using Random Forest, Logistic Regression, Support Vector Machine, LSTM, 

and ANN models. They concluded that the Long Short-Term Memory algorithm achieved the 

best estimation accuracy. It was also found that only the performance of LSTM could be 

significantly improved by including trading-related feature variables. Oyedele and co-

researchers [12] modelled the prediction of the closing prices of six different cryptocurrencies 

using Adaptive Boosting (ADA), Gradient Boosting Machines (GBM), Extreme Gradient 

Boosting (XGB), Deep Feedforward Neural Networks (DFNN), Gated Recurrent Units (GRU), 

and Convolutional Neural Networks (CNN). Based on their results, Convolutional Neural 

Networks performed the best in terms of both estimation accuracy and consistency. 

 

Akyildirim et al. [13] analysed the predictability of 12 cryptocurrency prices using Support 

Vector Regression, Logistic Regression, Random Forest, and ANN models for the period April 

2013 to June 2018. Based on their results, SVR was found to be the most useful method. Borges 

and Neves [14] came to a similar conclusion regarding the best model performance. The authors 

analysed the price movements of several cryptocurrencies using technical indicators and 

machine learning algorithms (Logistic Regression, Random Forest, Support Vector Regression, 

and Gradient Tree Boosting). In their case, SVR was found to be the most effective, and they 

also found that using ML methodologies in trading strategies yields higher returns than the buy-

and-hold approach. In their study, Zhang et al. [15] compared ARIMA, Random Forest, 

XGBoost, MLP, LSTM, GRU, CNN, and hybrid models (LSTM+CNN, GRU+CNN, WAMC 

- Weighted & Attentive Memory Channels) for predicting the prices of six different 

cryptocurrencies. They concluded that well-constructed hybrid methods can further improve 

predictive performance, and their proposed WAMC algorithm proved to be the best. Alonso-

Monsalve and co-authors [16] addressed the short-term trend analysis of six popular 

cryptocurrencies. The modelling was based on Convolutional Neural Networks, CNN-LSTM 

hybrids, Multilayer Perceptron, and Radial Basis Function Neural Network methodologies. The 

results of the hybrid architecture were always significantly better than the others, and this 

network was the only one that could predict Dash and Ripple trends with the smallest error 

(around 4%). 

 

Bitcoin is also popular in the field of scientific research, as it appears in most publications on 

cryptocurrency. In their study, Cavalli and Amoretti [17] attempted to predict the trend of 

Bitcoin using price data from April 2013 to February 2020. They used the LSTM and CNN 

(Convolutional Neural Network) algorithms for modelling. It was found that CNN achieved 

better estimation accuracy than LSTM. 

 

All of the following studies emphasise the virtues of the LSTM model in predicting Bitcoin 

prices. Chen et al. [18] investigated Bitcoin price prediction using logistic regression, linear 
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discriminant analysis, Random Forest (RF), XGBoost, quadratic discriminant analysis, Support 

Vector Machine (SVM), and LSTM models. It was concluded that for 5-minute price data, 

LSTM provided the best estimation performance, while for modelling with daily price data, 

logistic regression performed best. 

 

Jaquart et al. [19] used feedforward neural networks, LSTM (Long Short-Term Memory), 

GRU, Random Forest, and Gradient Boosting models to investigate the direction of Bitcoin 

price movements in the short term. They found that LSTM achieved the highest estimation 

accuracy. A comparison of technical, blockchain-based, sentiment/interest-based, and asset-

based feature sets showed that, for most methods, technical features remained overwhelmingly 

important. For longer prediction horizons, the relative importance seemed to be distributed 

among several features, such as transactions per second and weighted sentiment. 

 

Alkhodhairi et al. [20] sought to estimate the opening, highest, lowest, and closing prices of 

Bitcoin using deep learning tools (LSTM, GRU). They modelled 4-hour, 12-hour, and 24-hour 

forecasts, concluding that LSTM produced the best performance. Similarly, Chen et al. [21] 

studied Bitcoin price prediction using Random Forest, Artificial Neural Network (ANN), 

LSTM, ARIMA, SVM, Adaptive Network Fuzzy Inference System (ANFIS), and Genetic 

Algorithm (GA) models. Their results confirmed that LSTM was the model with the highest 

estimation accuracy. They also found that various predictive algorithms perform better when 

feature variables are included in the model development process. 

 

Mudassir and colleagues [22] worked on predicting Bitcoin prices, employing four machine 

learning methods: Artificial Neural Network, Stacked Artificial Neural Network, Support 

Vector Machine (SVM), and Long Short-Term Memory (LSTM). Their results showed that the 

actual BTC price could be predicted with a very low error rate, although its rise and fall were 

much more difficult to anticipate. The classification model using LSTM achieved the best 

performance in the literature. 

 

Mallqui and Fernandes [23] investigated the predictability of Bitcoin’s maximum, minimum, 

and closing prices using the Multilayer Perceptron and Support Vector Regression models. 

Their results showed that the SVR algorithm provided the most accurate predictions. They also 

found that the choice of attributes and the best machine learning model achieved an 

improvement of more than 10% in price forecast accuracy compared to methodologies 

presented in previous studies. 

 

Jang and Lee [24] analysed the evolution of Bitcoin prices and their predictability using linear 

regression, Bayesian Neural Networks, and Support Vector Machine methodologies. Based on 

predictive performance, they concluded that the Bayesian model was the most appropriate of 

the three. Similarly, Al-Nefaie and Aldhyani [25] modelled Bitcoin price predictability using 

Gated Recurrent Unit (GRU) and Multilayer Perceptron (MLP) algorithms for the period 

January 2021 to June 2022. Their findings indicated that MLP performed marginally better than 

the GRU model. These results could have a significant impact on asset pricing strategies, 

considering the uncertainties associated with digital currencies. 

 

Cocco et al. [26] modelled Bitcoin price predictability using Bayesian Neural Network, 

Feedforward Neural Network, Long Short-Term Memory Neural Network, Support Vector 

http://www.virtual-economics.eu/


 
www.virtual-economics.eu                                                                                ISSN 2657-4047 (online) 

Laszlo Vancsura, Tibor Tatay, and Tibor Bareith 

Virtual Economics, Vol. 7, No. 4, 2024 
 

69 

Machine, and hybrid algorithms. They found that combined models improved predictive 

performance. Tapia and Kristjanpoller [27] used econometric, machine learning, and hybrid 

models to predict Bitcoin volatility, concluding that combining AMEM (Asymmetric 

Multiplicative Error Model) and LSTM significantly enhanced prediction accuracy. 

 

In their study, Dutta and co-authors [28] compared GRU and LSTM models for Bitcoin price 

prediction. The hybrid model they proposed, enhanced by GRU recurrent selection, proved to 

be more accurate than other algorithms. 

 

Lahmiri and Bekiros [29] used the LSTM and GRNN (Generalized Regression Neural 

Networks) models to investigate the price prediction of Bitcoin, Digital Cash, and Ripple. Their 

findings indicate that the predictive ability of LSTM neural network topologies is significantly 

higher than that of the GRNN architecture, which was used as a reference. Although the 

computational burden of the LSTM model is higher, deep learning ultimately proved to be 

highly effective in capturing the chaotic dynamics inherent in cryptocurrency markets. 

 

Serrano [30] employed Random Neural Network (RNN), LSTM, and linear regression models 

to predict the prices of Bitcoin, Ethereum, and Ripple. The results demonstrated that NN 

algorithms exhibited very similar performance, with all outperforming linear regression. A 

similar conclusion was reached by Uras et al. [31], who examined the price variability and 

predictability of Bitcoin, Ethereum, and Litecoin. Their analysis incorporated both univariate 

(closing prices only) and multivariate (including volume, highest, and lowest prices) versions 

of linear regression and LSTM models. The study found that Ethereum and Litecoin were easier 

to predict than Bitcoin, with the univariate LSTM model achieving the highest accuracy. 

However, the authors also noted that regression models had significantly shorter run times 

compared to LSTM. 

 

Sebastião and Godinho [32] analysed the prices of Bitcoin, Ethereum, and Litecoin between 

August 2015 and March 2019. Their methodology was based on linear regression, Random 

Forest, and Support Vector Machine, which were further adapted into trading strategies. 

Contrary to expectations, linear regression yielded the best predictive results. Furthermore, the 

study found that forecasts were most accurate for Ethereum and Litecoin. 

 

In their study, Poongodi et al. [33] applied linear regression (LR) and support vector machine 

(SVM) models to predict Ethereum prices. Their findings indicate that SVM achieved 

significantly higher estimation accuracy than LR. Similarly, Zoumpekas et al. [34] investigated 

Ethereum price prediction using various neural network models, including CNN, LSTM, 

SLSTM, BiLSTM, and GRU. Their results demonstrated that the traditional LSTM algorithm 

was the most suitable for forecasting Ethereum price data. 

 

Patel et al. [35] examined the predictability of Litecoin and Monero prices for 1-day, 3-day, and 

7-day estimation periods. Their findings suggest that a GRU-LSTM hybrid model achieved 

superior accuracy compared to the traditional LSTM algorithm. Similarly, Peng et al. [36] 

analysed the predictability of Bitcoin, Ethereum, and Dash volatility using GARCH, SVR, and 

hybrid models. Their results indicate that the SVR-GARCH hybrid approach outperformed all 

other models in terms of predictive efficiency. 
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The literature on activation functions is relatively extensive, but studies specifically addressing 

cryptocurrency markets remain limited. The following section presents existing research, 

beginning with general applications and subsequently narrowing the focus to cryptocurrency-

specific studies. 

 

Fabozzi et al. [37] employed deep learning neural network regression models to analyse 

economic and financial data, incorporating 500 different variables. Their research primarily 

explored the effectiveness of rectified linear unit (ReLU) and sigmoid activation functions, 

concluding that the ReLU activation function resulted in higher forecasting accuracy than 

sigmoid. 

 

Konak et al. [38] examined the predictability of dividend payout ratios for companies from 

2011 to 2021 using a hybrid method combining genetic algorithms and artificial neural 

networks (ANNs). A distinguishing feature of their study was the experimentation with six 

different activation functions to optimise model performance. Their results indicate that a model 

with three hidden layers yielded the best predictive outcomes, where the activation functions 

used per layer were, in order: tanh, sigmoid, and radial basis transfer. 

 

Fraszka-Sobczyk and Zakrzewska [39] studied volatility forecasts for the WIG20, DAX, FTSE 

250, Nikkei 255, Hang Seng, S&P 500, and Nasdaq 100 stock indices between 2016 and 2020. 

Their analysis, conducted using the Multi-Layer Perceptron method, found that a combination 

of sigmoid and tanh activation functions resulted in the best forecasting performance. 

Furthermore, they noted that the tanh function was particularly effective in the middle layers of 

the network. 

 

Kayim and Yilmaz [40] investigated the volatility of EUR/USD and gold at different time 

intervals using RNN and LSTM algorithms. They incorporated sigmoid, ReLU, and their 

proposed volatility activation function into the models. Their findings indicate that models 

developed with the volatility function demonstrated improved accuracy and lower average 

learning and validation loss, suggesting that this approach could serve as a viable alternative to 

commonly used activation functions. 

 

Tripathi and Sharma [41] focused on short-term Bitcoin price forecasts. Their study employed 

DANN, LSTM, BiLSTM, and CNN-BiLSTM models, with Bayesian optimisation techniques 

applied to select hyperparameters. They experimented with linear and ReLU activation 

functions for optimisation, finding that the linear function produced superior model 

performance. Additionally, their results indicate that the DANN method, which was designed 

using technical indicators, achieved the highest estimation accuracy. 

 

Sbrana and Lima de Castro [42] examined the construction of optimal cryptocurrency portfolios 

using various machine learning and deep learning models. Their findings suggest that the use 

of the Mish activation function led to greater estimation accuracy compared to the commonly 

used ReLU function. 
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3. Data and Methods   

3.1. Applied Methods 

3.1.1. Simple Recurrent Neural Network (RNN) 

 

A Recurrent Neural Network (RNN) is an artificial neural network composed of three main 

layers: input, hidden, and output. Unlike traditional networks, RNNs have two key differences. 

First, the nodes within the same hidden layer are interconnected. Second, the inputs to the 

hidden layer at the current time step include the outputs of the input layer at present and the 

outputs of the hidden layer from the previous time step. This unique structure enables RNNs to 

better capture the temporal dynamics of sequential data. As a result, RNNs can leverage 

previously learned information to identify current patterns, improving their ability to model 

data [43]. The following equations can represent the basic structure of an RNN: 

 

𝑆𝑡 = (𝑈𝑥𝑡 + 𝑊𝑆𝑡−1 + 𝑏ℎ)                     (1) 

𝑦𝑡 = 𝑓(𝑉𝑆𝑡 + 𝑏0)          (2) 

 

where xt represents the inputs at time t, St the outputs of the hidden layer, yt the information of 

the output layer, f() the activation function, and bh and bo the bias vectors of the hidden and 

output layers, respectively. The weights are defined as W, which is the weight of the hidden 

layer; U, which is the weight of the inputs at the current time; and V, which is the weight of the 

outputs. 

 

3.1.2. Gated Recurrent Unit (GRU) 

 

The Gated Recurrent Unit (GRU) shares the same input and output structure as a basic RNN. 

However, its internal structure consists of only two gates: the update gate zt and the reset gate 

rt. The update gate zt determines how much of the previous memory is retained for the current 

time step, while the reset gate rt controls how the new input data is combined with the previous 

memory. Unlike the LSTM model, the update gate zt in GRU can both forget and select memory 

contents, leading to improved computational efficiency and reduced runtime. The following 

equations govern the GRU: 

 

𝑧𝑡 =  𝜎(𝑊𝑧ℎ𝑡−1 +  𝑈𝑧𝑥𝑡)         (3) 

𝑟𝑡 =  𝜎(𝑊𝑟ℎ𝑡−1 +  𝑈𝑟𝑥𝑡)         (4) 

ℎ̃𝑡 = tanh (𝑊0(ℎ𝑡−1  ⊙ 𝑟) +  𝑈0𝑥𝑡)        (5) 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ̃𝑡 + (1 − 𝑧𝑡)  ⊙  ℎ𝑡−1        (6) 

 

In this case, ℎ𝑡−1 represents the hidden state of the neuron at the previous time step, and σ() 

denotes the logistic sigmoid function, defined as 𝜎(𝑥) = 1/1 + 𝑒−𝑥. The weight matrices for 

the update gate are 𝑊𝑧 and 𝑈𝑧, and for the reset gate, they are 𝑊𝑟 and 𝑈𝑟. The weight matrices 

for the intermediate output are represented by 𝑊0 and 𝑈0. The input value at time t is denoted 

by 𝑥𝑡, while the hidden layer output and the temporary unit state at time t are represented by ℎ𝑡̃ 

and ℎ𝑡, respectively [44]. 
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3.1.3. Long-Short Term Memory (LSTM) 

 

RNNs, such as LSTM networks, are commonly used for analyzing sequential data. In these 

models, short-term memory is associated with internal cell states, while long-term memory is 

tied to learning weights. LSTM was developed to address the issue of vanishing gradients in 

traditional RNNs. The key difference is that LSTM replaces the RNN’s intermediate layer with 

memory blocks, allowing it to maintain information over longer periods. The primary 

advantage of LSTM is its ability to learn long-term dependencies, which standard RNNs cannot 

do effectively. The data from the initial time interval must be preserved to update the network’s 

weight values and forecast future data points. While RNNs can learn short-term patterns, they 

struggle with long-term time series, a problem that LSTM is designed to overcome. LSTM 

consists of memory blocks, also known as recurrent subnets, each containing three gates—

input, output, and forget—that control the flow of information. These gates manage continuous 

read, write, and cell operations, along with one or more autoregressive memory cells [45]. The 

following equations describe the LSTM model: 

 

𝐼𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑖 + 𝐻𝑡−1𝑊ℎ𝑖 + 𝑏𝑖)        (7) 

𝐹𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑓 +  𝐻𝑡−1𝑊ℎ𝑓 + 𝑏𝑓)        (8) 

𝐶̃𝑡 =  tanh (𝑋𝑡𝑊𝑥𝑐 + 𝐻𝑡−1𝑊ℎ𝑐 + 𝑏𝑐 )       (9) 

𝐶𝑡 =  𝐹𝑡 ⊙  𝐶𝑡−1 + 𝐼𝑡 ⊙  𝐶̃𝑡         (10) 

𝑂𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑜 + 𝐻𝑡−1𝑊ℎ𝑜 + 𝑏𝑜)        (11) 

 

The matrices 𝑊𝑥𝑐 and 𝑊ℎ𝑐 represent the weight matrices of the gated unit, and 𝑏𝑐 is the bias 

term for this unit. 𝐶𝑡 is the current cell state, while 𝐶𝑡−1 refers to the cell state at the previous 

time step. Similarly, 𝑊𝑥𝑜 and 𝑊ℎ𝑜 are the weight matrices of the output gate, and 𝑏𝑜 is the 

corresponding bias term [46]. 

 

Here, 𝑋𝑡 denotes the input batch at time t, and 𝐻𝑡−1 is the hidden state from the previous time 

step. The weight matrices for the input gate are 𝑊𝑥𝑖 and 𝑊ℎ𝑖, with 𝑏𝑖 as the bias term, and the 

sigmoid function σ is used in this equation to control the activation. The weight matrices of the 

forget gate are 𝑊𝑥𝑓 and 𝑊ℎ𝑓, and the bias term is 𝑏𝑓. The candidate memory cells are denoted 

by 𝐶𝑡. As mentioned earlier, the weight matrices for the gated unit are 𝑊𝑥𝑐 and 𝑊ℎ𝑐, with 𝑏𝑐 as 

the bias term. The current cell state 𝐶𝑡 differs from the previous cell state 𝐶𝑡−1 at this time step, 

while the output gate’s weight matrices remain 𝑊𝑥𝑜 and 𝑊ℎ𝑜, and the bias term remains 𝑏𝑜 [46]. 

 

3.1.4. LSTM-GRU Hybrid 

 

GRU and LSTM networks can selectively retain important information and discard irrelevant 

data. Using three gates to control the flow of information, LSTM effectively addresses the 

problem of long-term dependencies. However, due to the large number of parameters in LSTM, 

each cell consists of four fully connected layers. In practice, when dealing with large time 

intervals or deep LSTM networks, there is a higher risk of overfitting, which leads to increased 

computational requirements. 
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In contrast, GRU simplifies the LSTM architecture by replacing its input, forget, and output 

gates with two gates: the update gate (𝑧𝑡) and the reset gate (𝑟𝑡). This reduction in parameters 

lowers the risk of overfitting and decreases computational complexity. However, GRU may not 

perform as well as LSTM when handling large datasets. A hybrid LSTM-GRU model combines 

the strengths of both networks, reducing overfitting and achieving highly accurate forecasts 

[47]. 

 

In this hybrid model, the first hidden layer is LSTM. Each LSTM neuron processes the input 

and generates a weighted output. This data is then passed to the second hidden layer, which is 

a GRU layer, where another weighted output is produced. Similarly, the data is passed to a third 

hidden layer, a dense layer, where a final weighted output is generated. The dense layer is a 

standard fully connected neural network layer used to produce the final output. The data from 

the dense layer is then passed to the output neuron [48]. 

 

3.1.5. RNN-LSTM Hybrid 

 

The RNN-LSTM hybrid model combines the strengths of both RNN and LSTM, significantly 

improving time series predictability while minimizing their weaknesses [49]. The first hidden 

layer in this model is an RNN, where neurons process the input and generate a weighted output. 

This output is then passed to the second hidden layer, an LSTM layer, where another weighted 

output is produced. Additional weighted values are generated as the data moves from the RNN 

layer to the LSTM layer. Finally, the data is transferred to the third hidden layer, a dense layer, 

where the final weighted output is produced. 

 

3.1.6. RNN-GRU Hybrid 

 

While numerous hybrid algorithms are discussed in the literature, research on the RNN-GRU 

combination remains limited. This model is similar to the RNN-LSTM hybrid, with the first 

hidden layer being an RNN, where neurons process the input and generate a weighted output. 

This output is then passed to the second hidden layer, a GRU layer, where additional weighted 

values are generated. Further weighted outputs are produced as the data moves from the RNN 

to the GRU layer. Finally, the data is transferred to the third hidden layer, a dense layer, where 

the final weighted output is generated. 

Python version 3.9 was used for modelling with this layer, with the Scikit-Learn and 

TensorFlow libraries providing essential support for machine learning methods. 

 

3.2. Performance Evaluation 

 

The MAPE was employed in our study to assess the predictive models. For a given set of 

forecasts, this indicator computes the average magnitude of the error and displays the deviations 

as a percentage [50]. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖− 𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1          (12) 

http://www.virtual-economics.eu/


 
www.virtual-economics.eu                                                                                ISSN 2657-4047 (online) 

Laszlo Vancsura, Tibor Tatay, and Tibor Bareith 

Virtual Economics, Vol. 7, No. 4, 2024 
 

74 

Forecasts are more accurate and reliable when the MAPE value is lower. Since MAPE is not 

affected by the nominal scale of prices, it is useful for comparing different models and 

instruments. 

 

3.3. Hyperparameters 

 

The hyperparameters for the models used in this study are shown in Table 2, and the same 

values were applied to the hybrid models. No hyperparameter optimisation was performed, but 

the most commonly used values from the literature were applied to the models, except for the 

activation function, for which three different types were tested. 

 

Table 1. Hyperparameters 

Model Parameters Value 

RNN 

Hidden Layers 2 

Hidden layer neuron count 150 

Batch size 16 

Epochs 100 

Activation ReLU, Tanh, sigmoid 

Learning rate 0,001 

Optimiser Adam 

LSTM 

Hidden Layers 2 

Hidden layer neuron count 150 

Batch size 16 

Epochs 100 

Activation ReLU, Tanh, sigmoid 

Learning rate 0,001 

Optimiser Adam 

GRU 

Hidden Layers 2 

Hidden layer neuron count 150 

Batch size 16 

Epochs 100 

Activation ReLU, Tanh, sigmoid 

Learning rate 0,001 

Optimiser Adam 

Source: Authors’ research. 

 

3.4. Activation Functions 

 

Activation functions are crucial for operating neural network models, enabling learning abstract 

features through non-linear transformations. Some common properties of activation functions 

are as follows [7]: 

 Introduce nonlinearity to the optimisation domain, improving the network’s training 

convergence. 

 Avoid significantly increasing the computational complexity of the model. 

 Ensure the flow of gradients is not hindered during the learning process. 
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 Maintain the distribution of data to facilitate more effective network training. 

 

The three most commonly used basic activation functions (Figure 1) are ReLU, sigmoid, and 

Tanh. 

 
Figure 1. Activation Functions Relu, Sigmoid, and Tanh 
Source: Wang et al. [51] 
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3.4.1. Rectified Linear Unit (ReLU) 

 

Rectified Linear Unit (ReLU) is a widely used activation function that returns the input value 

for positive and zero for negative inputs. Thus, the range of ReLU is (0, ∞). ReLU addresses 

the computational complexity issues associated with the sigmoid and Tanh functions. However, 

a drawback of ReLU is that the gradient vanishes for negative inputs. Despite this limitation, it 

remains one of the most commonly used activation functions in deep learning models. The 

ReLU function is calculated as follows [7]: 

 

ReLU(x) = max (0, 𝑥)         (13) 

 

3.4.2. Sigmoid 

 

Sigmoid is a widely used traditional non-linear activation function that maps input data to a 

value between 0 and 1. However, for very large or very small inputs, the output of the sigmoid 

function becomes saturated, leading to the vanishing gradient problem. The vanishing gradient 

problem occurs when the gradient of the objective function with respect to a parameter becomes 

very close to zero, preventing meaningful updates to the parameters during training with 

stochastic gradient descent. Additionally, since the output is not zero-centered, it can result in 

poor convergence. The sigmoid function is defined as follows [7]: 

 

Sigmoid(x) =  
1

1+e−x          (14) 

 

3.4.3. Hyperbolic Tangent (Tanh) 

 

The Tanh function is another commonly used activation function in neural network modelling. 

It is similar to the sigmoid function, but the key difference is that Tanh is zero-centered. The 

Tanh function compresses the input data to a range between -1 and 1. However, like sigmoid, 

Tanh also suffers from drawbacks like the vanishing gradient problem and increased 

computational complexity. The Tanh function is defined as follows [7]: 

 

Tanh(x) =  
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥          (15) 

 

3.5. Data 

 

In our research, we used the prices of Bitcoin, Ethereum, and Litecoin from 1 January 2016 to 

30 June 2022. This period was chosen to capture key economic phases, including the calm 

period (2018), the COVID-19 pandemic (2020), and the war crisis (2022). We chose these 

periods because we were interested in comparing the performance of the models during the 

global economic quiescent period, when we did not observe any ambivalent effects.  Then, in 

order to check the robustness of the models, we used the effects of two consecutive crisis 

periods to test the consistency of the estimation results of our methodologies in the presence of 

strong external stress effects. Additionally, because cryptocurrencies are relatively new 
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compared to other financial products, their available price data spans a shorter timeframe. The 

data were sourced from [52]. 

 

After cleaning and scanning the datasets, they were divided into three subsets, and the first 

period examined a stable economic environment from 1 January 2016 to 30 June 2018. The 

second period, from 1 January 2018 to 30 June 2020, was chosen due to the impact of the 

COVID-19 pandemic. The third period relates to the economic instability caused by the 

Russian-Ukrainian conflict, covering the time interval between 1 January 2020 and 30 June 

2022. While both crisis periods were key factors in testing the robustness of the models, it is 

important to note that cryptocurrencies tend to behave differently from traditional investment 

products due to their unique cyclicality. 

 

For modelling, the learning and testing datasets were split in an 80%-20% ratio, the most 

commonly used approach in the literature. For first forecast period (2018) The training dataset 

covered the period from 1 January 2016 to 31 December 2017 and the testing dataset spanned 

from 1 January 2018 to 30 June 2018. we have followed a similar approach for the 2020 and 

2022 forecasts. 

 

Simulations were conducted using both univariate and multivariate methods. For the univariate 

models, daily closing prices were used as the basis for predictions, with the current price being 

estimated based on the data from the previous 50 time units. In the multivariate tests, a similar 

approach was followed, but in addition to the daily closing prices, the models also incorporated 

opening, highest, and lowest prices for the same 50-day period. 

 

4. Results and Discussion 

4.1. Predictive Performance of Machine Learning Models 

 

Descriptive statistics on the prices of the cryptocurrencies used in the research are presented in 

Table 2. 

 

Table 2. Descriptive Statistics for the Period 1 January 2016 to 30 June 2022 

 N Average Median Std Min Max 

Bitcoin 2372 14827.59 8040.27 17180.86 364.33 67566.83 

Ethereum 2371 807.54 254.81 1149.65 0.92 4800.00 

Litecoin 2372 80.21 58.43 69.38 3.00 386.45 
Source: Authors’ research. 

 

As an initial step, the ReLU activation function was applied in the model runs, and the results 

are discussed below. The research dataset included Bitcoin, Ethereum, and Litecoin, which 

together account for approximately 71.68% of the total market capitalization 

(www.coinmarketcap.com). Figure 2 presents the MAPE values of the predictions for the first 

half of 2018. 

 

In univariate modelling, GRU provided the most accurate predictive performance for Bitcoin, 

with a MAPE of 0.0457, while RNN was the least accurate with a MAPE of 0.1771. For 

Ethereum, the RNN-GRU algorithm yielded the best result (0.0586), whereas RNN-LSTM was 
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the least accurate (0.1015). Simulations for Litecoin proved to be the most challenging, with 

MAPE values ranging from 0.1130 to 0.3389. The simplest model, RNN, produced the best 

result (0.1130), while the RNN-GRU hybrid produced the least accurate result (0.3389). 

 

 
 

Figure 2. The MAPE values for cryptocurrency forecasts in coefficient form for the first half 

of 2018 (lower values indicate better accuracy) 
Source: Authors’ research. 

 

The multivariate modelling enhanced efficiency, as reflected in the improved MAPE values. 

GRU (0.0448) provided the most accurate prediction for Bitcoin, while RNN had the worst 

performance (0.0989). Ethereum also saw improved prediction accuracy, with RNN and RNN-

GRU achieving the best result (0.0570). The LSTM model placed last with a MAPE of 0.0994, 

though this still represented an improvement over the univariate estimation. For Litecoin, GRU 

produced the most accurate estimate (0.1006), while the RNN-LSTM hybrid was the least 

accurate (0.2907). Overall, using multivariate algorithms improved prediction performance for 

the first half of 2018 across all cryptocurrencies analyzed. 

 

The cryptocurrency sector was the least affected by the issues related to the spread of COVID-

19, as indicated in the test results (Figure 3). In the univariate tests, GRU provided the best 

predictive performance for Bitcoin, with a MAPE of 0.0301, while RNN had the worst 

performance with a MAPE of 0.0411. LSTM was the most accurate for Ethereum, achieving 

an error value of 0.0364, whereas RNN had the lowest predictive accuracy (0.0547). For 

Litecoin, LSTM again produced the lowest MAPE (0.0342), while GRU had the highest 

(0.0533). 
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Figure 3. The MAPE values for cryptocurrency forecasts in coefficient form for the first half 

of 2020 (lower values indicate better accuracy). 
Source: Authors’ research. 

 

Using multivariate models, the GRU model (0.0276) delivered the best performance for 

Bitcoin, with LSTM following closely behind (0.0279). RNN, however, had the worst 

performance with a MAPE of 0.0473. For Ethereum, the LSTM-GRU hybrid achieved the 

lowest error value among all methods tested (0.0367), although it did not surpass the best 

performance from the univariate models. RNN was the least accurate, with a MAPE of 0.0496. 

For Litecoin, the LSTM-GRU hybrid provided the most accurate forecast for the first half of 

2020, with a MAPE of 0.0336, while the RNN-GRU hybrid was the least reliable, with an 

outlier MAPE of 0.0835. Notably, except for Ethereum, the lower bound of the MAPE values 

was reduced, indicating that multivariate models generally offered improved performance over 

univariate models. 

 

In the third forecast period, the first half of 2022 (Figure 4), GRU achieved the most accurate 

predictive performance for Bitcoin in univariate simulations, with a MAPE of 0.0274, while 

RNN-LSTM performed significantly worse, with a MAPE of 0.0608. For Ethereum, the GRU 

algorithm also outperformed the other models, achieving a MAPE of 0.0357, while RNN-

LSTM was the least accurate, with a MAPE of 0.0614. For Litecoin, the MAPE values ranged 

from 0.0367 to 0.0644, with LSTM delivering the best result and traditional RNN producing 

the weakest. 

 

In the multivariate modelling, LSTM-GRU (0.0284) was the most efficient for Bitcoin, while 

RNN-LSTM had the worst performance (0.0441). No significant improvement was observed 

for Ethereum with the inclusion of additional explanatory variables. LSTM performed the best 

(0.0433), slightly ahead of LSTM-GRU (0.0438), with RNN-GRU being the least accurate 
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(0.0468). The difference between the lower and upper bounds of the interval was minimal in 

this case. For Litecoin, LSTM provided the most accurate prediction (0.0418), while GRU was 

the least accurate (0.0653). Overall, using multivariate methods did not lead to improved 

predictive performance. 

 

 
 

Figure 4. The MAPE values for cryptocurrency forecasts in coefficient form for the first half 

of 2022 (lower values indicate better accuracy) 

Source: Authors’ research. 

 

Figure 5 displays the average estimation performance for cryptocurrencies across the three 

periods, categorized by the models used. The results indicate that what was expected to be a 

relatively calm period (2018) produced sextreme outcomes in the cryptocurrency market, 

making it the most challenging period for model reliability. Among all the methods tested, the 

multivariate GRU algorithm provided the most accurate predictions overall, while the 

univariate RNN-GRU hybrid method performed the worst. The most stable MAPE values were 

observed in 2020, during the peak of the COVID-19 pandemic, when cryptocurrency markets 

experienced lower volatility than in other periods. On average, the LSTM method performed 

the best, while RNN-GRU lagged. The 2022 period showed less extreme predictive 

performance than 2018, with the univariate GRU model proving the most reliable. In contrast, 

the RNN-LSTM hybrid algorithm, which used a single explanatory variable, delivered the least 

accurate predictions. 
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Figure 5. The values of the average MAPE indicators for the first half of 2018, 2020 and 2022 

in coefficient form (lowers are better) 
Source: Authors’ research. 

 

4.2. Optimisation of Activation Functions 

 

The literature emphasizes the importance of activation functions in various predictive models 

[6-9]. Therefore, we sought to replace the commonly used ReLU function, primarily used in 

regression models in our study, with two alternatives to test whether this substitution affects 

predictive performance. In subsequent tests, both univariate and multivariate estimators for the 

three periods were evaluated using the Tanh and sigmoid functions. The modelling results and 

comparisons to the original model runs are presented below. We first illustrate the changes in 

MAPE values for 2018, followed by 2020, and finally, 2022. 

 

Table 3 presents the MAPE values for all three Bitcoin activation functions in 2018. Among 

the univariate models, GRU was the only one that did not show improvement over the previous 

forecast performance. Proportionally, the largest improvement was observed with RNN using 

the sigmoid function. Although the MAPE values for the other models also decreased, the 

absolute best result for GRU (0.0457) remained unchanged. After the multivariate model runs, 

neither GRU nor RNN-GRU demonstrated a better fit to the real price. The best MAPE value 

remained unchanged, while positive changes were observed for the other models. 
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Table 3. Bitcoin Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2018 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.1771 0.1101 0.0457 0.1107 0.0625 0.1002 

Tanh 
0.1078 

(6.93) 

0.0493 

(6.08) 

Not 

improved 

0.0805 

(3.02) 

0.0617 

(0.08) 

0.0774 

(2.28) 

Sigmoid 
0.0656 

(11.15) 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Multivariate 

ReLu 0.0989 0.0735 0.0448 0.0488 0.0696 0.0767 

Tanh 
0.0818 

(1.71) 

0.0532 

(2.03) 

Not 

improved 

0.0480 

(0.08) 

Not 

improved 

Not 

improved 

Sigmoid 
0.0827 

(1.62) 

Not 

improved 

Not 

improved 

Not 

improved 

0.0688 

(0.08) 

Not 

improved 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 
 

For Ethereum in 2018 (Table 4), we observed that in the univariate models, neither LSTM-

GRU nor RNN-GRU responded positively to the newly introduced activation functions. 

Significant improvement was only achieved with the application of the Tanh function. LSTM 

and GRU showed increased fitting accuracy, with GRU demonstrating the most improvement, 

as its MAPE value dropped to 0.0474. In the multivariate tests, LSTM-GRU and RNN-GRU 

hybrids showed no improvement. The GRU-sigmoid combination performed best, with a 

MAPE of 0.0502. 
 

Table 4. Ethereum Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2018 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0674 0.0626 0.0692 0.0620 0.1015 0.0586 

Tanh 
0.0610 

(0.64) 

0.0486 

(1.40) 
0.0474 

(2.18) 

Not 

improved 

0.0993 

(0.22) 

Not 

improved 

Sigmoid 
Not 

improved 

Not 

improved 

0.0635 

(0.57) 

Not 

improved 

Not 

improved 

Not 

improved 

Multivariate 

ReLu 0.0570 0.0994 0.0707 0.0729 0.0908 0.0570 

Tanh 
Not 

improved 

0.0683 

(3.11) 

0.0646 

(0.61) 

Not 

improved 

Not 

improved 

Not 

improved 

Sigmoid 
0.0524 

(0.46) 

Not 

improved 
0.0502 

(2.05) 

Not 

improved 

0.0752 

(1.56) 

Not 

improved 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 
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The effects of the changes made to the Litecoin 2018 forecasting models on the MAPE values 

are shown in Table 5. None of the newly applied activation functions for the univariate LSTM 

and RNN-LSTM models led to improvement. However, the MAPE values were reduced to 

0.0819 for RNN (sigmoid) and 0.0755 for GRU (sigmoid). The largest improvements were 

observed in the LSTM-GRU and RNN-GRU hybrid models, where the Tanh function yielded 

significantly positive changes. The MAPE was reduced to 0.1055 for LSTM-GRU and to 

0.0861 for RNN-GRU. In the multivariate models, the performance of LSTM and GRU did not 

improve further. For RNN, however, the MAPE was reduced to 0.0854 due to the application 

of the sigmoid function. All hybrid algorithms improved in the new simulations, with MAPE 

values of 0.0829 for LSTM-GRU, 0.1809 for RNN-LSTM, and 0.1049 for RNN-GRU using 

the Tanh activation function. 

 

Table 5. Litecoin Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2018 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

        

Univariate 

ReLu 0.1130 0.1912 0.1906 0.2490 0.1168 0.3389 

Tanh 
Not 

improved 

Not 

improved 

0.1591 

(3.15) 

0.1055 

(14.35) 

Not 

improved 

0.0861 

(25.28) 

Sigmoid 
0.0819 

(3.11) 

Not 

improved 
0.0755 

(11.51) 

Not 

improved 

Not 

improved 

Not 

improved 

Multivariate 

ReLu 0.1604 0.1642 0.1006 0.1739 0.2907 0.1573 

Tanh 
0.1564 

(0.40) 

Not 

improved 

Not 

improved 
0.0829 

(9.10) 

0.1809 

(10.98) 

0.1049 

(5.24) 

Sigmoid 
0.0854 

(7.50) 

Not 

improved 

Not 

improved 

0.1277 

(4.62) 

0.2013 

(8.94) 

0.1352 

(2.21) 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 

 

It is important to note that the 2020 period showed a much more stable picture in terms of 

volatility compared to 2018, which is reflected in the error values. Table 6 presents the MAPE 

values optimised with Bitcoin activation functions. All algorithms except RNN-GRU 

successfully ran the new simulations in the univariate models. For the LSTM, LSTM-GRU, and 

RNN-LSTM models, both Tanh and sigmoid functions led to improved prediction performance. 

As in the control method, GRU achieved the lowest MAPE values. However, GRU did not 

show any improvement in the multivariate models, unlike the others. LSTM had the lowest 

error with the Tanh function (0.0269). 
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Table 6. Bitcoin Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2020 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0411 0.0311 0.0301 0.0309 0.0404 0.0326 

Tanh 
0.0331 

(0.80) 

0.0292 

(0.19) 

Not 

improved 

0.0290 

(0.19) 

0.0393 

(0.11) 

Not 

improved 

Sigmoid 
Not 

improved 

0.0285 

(0.26) 
0.0279 

(0.22) 

0.0300 

(0.09) 

0.0326 

(0.78) 

Not 

improved 

Multivariate 

ReLu 0.0473 0.0279 0.0276 0.0338 0.0428 0.0418 

Tanh 
0.0402 

(0.71) 
0.0269 

(0.01) 

Not 

improved 

0.0332 

(0.56) 

0.0386 

(0.42) 

0.0380 

(0.38) 

Sigmoid 
0.0321 

(1.52) 

Not 

improved 

Not 

improved 

0.0325 

(0.13) 

Not 

improved 

0.0342 

(0.76) 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 
 

For Ethereum (Table 7), univariate tests for the first half of 2020 forecasts showed that four 

models—RNN, LSTM, LSTM-GRU, and RNN-LSTM—did not produce any significant 

improvements. RNN-GRU showed modest gains, while GRU achieved better-than-optimal 

results with MAPE values of 0.0377 using the Tanh function and 0.0363 using the sigmoid 

function, compared to its original 0.0400. In the multivariate model runs, only the combination 

of LSTM (0.0374) and LSTM-GRU (0.0363) with the Tanh function resulted in more accurate 

forecasts than the original models. 
 

Table 7. Ethereum Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2020 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0547 0.0364 0.0400 0.0402 0.0452 0.0477 

Tanh 
Not 

improved 

Not 

improved 

0.0377 

(0.23) 

Not 

improved 

Not 

improved 

0.0469 

(0.08) 

Sigmoid 
Not 

improved 

Not 

improved 
0.0363 

(0.37) 

Not 

improved 

Not 

improved 

Not 

improved 

Multivariate 

ReLu 0.0496 0.0384 0.0431 0.0367 0.0431 0.0390 

Tanh 
Not 

improved 

0.0374 

(0.10) 

Not 

improved 
0.0363 

(0.04) 

Not 

improved 

Not 

improved 

Sigmoid 
Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 
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The MAPE values for Litecoin’s 2020 predictions are shown in Table 8. In the univariate tests, 

the performance of the LSTM and RNN-GRU algorithms did not improve further. Overall, 

LSTM-GRU produced the best results using the Tanh activation function (0.0336), surpassing 

the lowest error value recorded previously. GRU also showed significant improvement, with 

the sigmoid function responsible for the positive change (0.0369). However, in the multivariate 

models, only RNN-GRU achieved a better result than before (0.0490). Despite this 

improvement, RNN-GRU’s original estimate had been considerably less accurate than the other 

algorithms, with nearly double the MAPE value (0.0835). 

Table 8. Litecoin Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2020 Forecast 

Type of 

model 

Activation 

function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0482 0.0342 0.0533 0.0462 0.0451 0.0374 

Tanh 
0.0448 

(0.34) 

Not 

improved 

0.0416 

(1.17) 
0.0336 

(1.26) 

0.0446 

(0.05) 

Not 

improved 

Sigmoid 
Not 

improved 

Not 

improved 

0.0369 

(1.64) 

Not 

improved 

Not 

improved 

Not 

improved 

Multivariate 

ReLu 0.0460 0.0377 0.0429 0.0336 0.0396 0.0835 

Tanh 
Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

0.0490 

(3.45) 

Sigmoid 
Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: authors’ research. 

Table 9. Bitcoin Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2022 Forecast 

Type of 

model 

Activation 

function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0325 0.0435 0.0274 0.0509 0.0608 0.0345 

Tanh 
Not 

improved 

0.0340 

(0.95) 

Not 

improved 

0.0363 

(1.46) 

0.0462 

(1.46) 

0.0320 

(0.25) 

Sigmoid 
0.0296 

(0.29) 

0.0334 

(1.01) 

Not 

improved 

0.0450 

(0.59) 

0.0366 

(2.42) 

Not 

improved 

Multivariate 

ReLu 0.0367 0.0304 0.0319 0.0284 0.0441 0.0399 

Tanh 
0.0309 

(0.58) 

Not 

improved 

0.0316 

(0.03) 

Not 

improved 

Not 

improved 

Not 

improved 

Sigmoid 
0.0306 

(0.61) 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

0.0333 

(0.66) 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 
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Bitcoin price forecasts for 2022 are presented in Table 9. In the univariate tests, none of GRU’s 

newly applied activation functions resulted in more accurate estimates. It is worth noting, 

however, that none of the optimised models approached the initial MAPE value of 0.0274 

obtained during the original modelling. The largest improvement was seen in the RNN-LSTM 

model, where the sigmoid function reduced the MAPE from 0.0608 to 0.0366. In the 

multivariate models, LSTM, LSTM-GRU, and RNN-LSTM showed no improvement over their 

original performance. Other algorithms produced modest improvements of 0.5-0.6%. For GRU, 

only minimal improvement was observed. 

 

The MAPE values for the activation function optimisation of the models used to forecast 

Ethereum prices in the 2022 period are presented in Table 10. The univariate modelling results 

found that the RNN, GRU, and RNN-GRU models did not achieve further performance 

improvements. Only the LSTM-Tanh combination approached the accuracy achieved by the 

GRU-ReLU pair. In the multivariate simulations, the MAPE performance of LSTM and RNN-

GRU showed no favorable changes. However, a more significant reduction of 0.77% for GRU 

compared to the initial condition was observed. Additionally, both hybrid models (LSTM-GRU 

and RNN-LSTM) were able to reduce the error to below 4% in the deviation between actual 

and predicted prices. 

 

Table 10. Ethereum Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2022 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0446 0.0389 0.0357 0.0426 0.0614 0.0430 

Tanh 
Not 

improved 

0.0361 

(0.28) 

Not 

improved 

0.0399 

(0.27) 

0.0558 

(0.56) 

Not 

improved 

Sigmoid 
Not 

improved 

Not 

improved 

Not 

improved 

0.0397 

(0.29) 

0.0439 

(1.75) 

Not 

improved 

Multivariate 

ReLu 0.0454 0.0433 0.0458 0.0438 0.0460 0.0468 

Tanh 
0.0437 

(0.17) 

Not 

improved 
0.0381 

(0.77) 

Not 

improved 

Not 

improved 

Not 

improved 

Sigmoid 
Not 

improved 

Not 

improved 

0.0429 

(0.29) 

0.0395 

(0.43) 

0.0398 

(0.62) 

Not 

improved 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 

The MAPE values of the modified models for Litecoin price forecasts up to 2022 are presented 

in Table 11. No further accuracy improvements were achieved with the univariate RNN, LSTM, 

RNN-LSTM, and RNN-GRU models. However, GRU with the Tanh function improved to 

0.0487, and LSTM-RNN with the sigmoid function improved to 0.0388. The multivariate RNN, 

LSTM-GRU, and RNN-LSTM models did not yield better results. However, LSTM (0.0387), 

GRU (0.0389), and RNN-GRU (0.0581) showed improvement after applying the Tanh 

activation function. As a result, the previous best result (0.0418) was surpassed by the LSTM 

model. 
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Table 11. Litecoin Univariate and Multivariate MAPE Indicators Using Different Activation 

Functions for the First Half of 2022 Forecast 

Type of 

Model 

Activation 

Function 
RNN LSTM GRU 

LSTM-

GRU 

RNN-

LSTM 

RNN-

GRU 

Univariate 

ReLu 0.0644 0.0367 0.0506 0.0513 0.0445 0.0642 

Tanh 
Not 

improved 

Not 

improved 

0.0487 

(0.19) 

0.0404 

(1.09) 

Not 

improved 

Not 

improved 

Sigmoid 
Not 

improved 

Not 

improved 

Not 

improved 

0.0388 

(1.25) 

Not 

improved 

Not 

improved 

Multivariate 

ReLu 0.0478 0.0418 0.0653 0.0457 0.0590 0.0593 

Tanh 
Not 

improved 
0.0387 

(0.31) 

0.0389 

(2.64) 

Not 

improved 

Not 

improved 

0.0581 

(0.12) 

Sigmoid 
Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Not 

improved 

Note: In parentheses, the performance improvement achieved as a result of changing the activation function in 

percentage compared to ReLU. 

Source: Authors’ research. 

 

5. Conclusions 
 

Accurate price forecasting in cryptocurrency markets is crucial due to the significant financial 

implications of prediction errors, which can lead to premature or delayed trading decisions and 

unnecessary transaction costs. This study examined the impact of different activation functions 

on neural network models—specifically RNN, LSTM, GRU, and hybrid models—in predicting 

the prices of Bitcoin, Ethereum, and Litecoin during critical economic periods. 

 

Our findings indicate that optimising activation functions significantly enhances prediction 

accuracy. The GRU model consistently produced the most accurate forecasts, while the RNN 

model was the least efficient. Multivariate models, which incorporated additional price metrics 

such as opening, highest, and lowest prices, generally outperformed univariate models, 

demonstrating the benefit of utilizing more comprehensive data. Notably, the use of the Tanh 

activation function led to the greatest improvements, particularly in previously 

underperforming models like RNN. 

 

These results suggest that careful selection and optimisation of activation functions can lead to 

more reliable cryptocurrency price forecasts, aiding practitioners in making better trading 

decisions and managing risks in the dynamic and often unpredictable cryptocurrency markets. 

For researchers, the study underscores the critical role of activation functions as a key parameter 

in neural network modelling for financial forecasting, encouraging further exploration in this 

area. 

 

Future studies could expand on our findings by exploring different economic periods and 

cryptocurrency behaviors. Investigating the models’ performance during various market 

conditions—such as extreme volatility, regulatory changes, or market bubbles—could provide 
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deeper insights into their robustness and adaptability. Additionally, examining a broader range 

of cryptocurrencies, including emerging or less-traded ones, may reveal whether the benefits of 

activation function optimisation are consistent across different assets with varying market 

dynamics. Incorporating external factors like macroeconomic indicators, social media 

sentiment, or blockchain-specific metrics could also enhance model inputs and potentially 

improve forecasting accuracy. 
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Appendix A 

 

Abbreviation Full Term 

ADA Adaptive Boosting (AdaBoost) 

AMEM Asymmetric Multiplicative Error Model 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network 

ARIMA AutoRegressive Integrated Moving Average 

BiLSTM Bidirectional Long Short-Term Memory 

CNN Convolutional Neural Network 

DFNN Deep Feedforward Neural Network 

FNN Feedforward Neural Networks 

GA Genetic Algorithm 

GARCH Generalized Autoregressive Conditional Heteroskedasticity 

GBM Gradient Boosting Machine 

GRNN Generalized Regression Neural Network 

GRU Gated Recurrent Unit 

LDA Linear Discriminant Analysis 

LightGBM Light Gradient Boosting Machine 

LSTM Long Short-Term Memory 

MAPE Mean Absolute Percentage Error 

ML Machine Learning 

MLP Multilayer Perceptron 

QDA Quadratic Discriminant Analysis 

RBF Radial Basis Function 

ReLU Rectified Linear Unit 

RF Random Forest 

RNN Recurrent Neural Network 
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Abbreviation Full Term 

SLSTM Stacked Long Short-Term Memory 

SVM Support Vector Machine 

SVR Support Vector Regression 

Tanh Hyperbolic Tangent (Activation Function) 

WAMC Weighted & Attentive Memory Channels 

XGB/XGBoost Extreme Gradient Boosting 
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