Using Blockchain and Artificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency
DOI:
https://doi.org/10.34021/ve.2022.05.03(4)Keywords:
blockchain, artificial intelligence, energy management, energy efficiencyAbstract
Improving energy management has received a lot of attention due to environmental issues, energy crises, and growing energy prices in today’s world. Various digital technologies have been developed to enhance energy management to cover these challenges. This article investigates Blockchain and Artificial Intelligence, which have recently attracted increasing attention. The study applies the software of VOSviewer for providing bibliometric analysis. The data (pull of the scientific documents) was generated from the Scopus and Web of Science. There have been done a critical analysis of the literature for evaluating the research in the proposed area. This paper focuses on possible use cases of blockchain and artificial intelligence technologies and considers aspects of technology used to achieve energy efficiency. The findings showed that the technologies are widely applied in energy management. Besides, it is lack of documents that contain the terms ‘energy efficiency and ‘blockchain’. The results of analysis confirm that artificial intelligence has been rapidly integrating with energy management, helping to develop more efficient and secure energy generation techniques.
Downloads
References
Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., AlGhamdi, A. S., & Alshamrani S. S. (2022). Energetics systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256.
Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143-174. https://doi.org/10.1016/j.rser.2018.10.014.
Awan, U., Imran, N., & Munir, G. (2014). Sustainable development through energy management: Issues and priorities in energy savings. Research Journal of Applied Sciences, Engineering and Technology, 7(2), 424–429. https://doi.org/10.19026/rjaset.7.271.
Baashar, Y., Alkawsi, G., Alkahtani, A. A., Hashim, W., Razali, R. A., & Tiong, S. K. (2021). Toward blockchain technology in the energy environment. Sustainability, 13(16), 9008. https://doi.org/10.3390/su13169008.
Backlund, S., Thollander, P., Palm, J., & Ottosson, M. (2012). Extending the energy efficiency gap. Energy Policy, 51, 392-396. https://doi.org/10.1016/j.enpol.2012.08.042.
Bao, J., He, D., Luo, M., & Choo, K.-K. R. (2021). A survey of blockchain applications in the energy sector. IEEE Systems Journal, 15, 3370-3381. https://doi.org/10.1109/JSYST.2020.2998791.
Blockchain in the energy sector: Real World blockchain use cases. ConsenSys. (n. d.). Retrieved from https://consensys.net/blockchain-use-cases/energy-and-sustainability/
Borowski, P. F. (2021). Digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector. Energies, 14(7), 1885. https://doi.org/10.3390/en14071885.
Butijn, B.-J., Tamburri, D. A., & Heuvel, W.-J. van den. (2020). Blockchains. ACM Computing Surveys, 53, 1-37. https://doi.org/10.1145/3369052.
Case study: Artificial intelligence for building energy management systems – analysis. IEA. (n. d.-a). Retrieved from https://www.iea.org/articles/case-study-artificial-intelligence-for-building-energy-management-systems
Chen, S., Ping, J., Yan, Z., Li, J., & Huang, Z. (2022). Blockchain in energy systems: Values, opportunities, and limitations. Frontiers in Energy, 16(1), 9-18. https://doi.org/10.1007/s11708-022-0818-8
Dick, C. I., & Praktiknjo, A. (2019). Blockchain technology and electricity wholesale markets: Expert insights on potentials and challenges for OTC trading in Europe. Energies, 12(5), 832. https://doi.org/10.3390/en12050832
Dzobo, O., Malila, B., & Sithole, L. (2021). Proposed framework for blockchain technology in a decentralised energy network. Protection and Control of Modern Power Systems, 6(1), 31. https://doi.org/10.1186/s41601-021-00209-8.
Eck, N. J., & Waltman, L. (2022). VOSviewer Manual. VOSviewer. Retrieved from https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf
EL-Shimy, M. (2018). Fundamentals of Energy Management and Energy Managers - A technical report and a short course. Retrieved from https://doi.org/10.13140/RG.2.2.20027.31524.
Gonçalves, A. da Silva., & Mil-Homens dos Santos, F. J. (2019). Energy management system ISO 50001:2011 and energy management for sustainable development. Energy Policy, 133, 110868. https://doi.org/10.1016/j.enpol.2019.07.004.
Harkut, G.D., & Kasat, K. (2019). Introductory Chapter: Artificial Intelligence - Challenges and Applications. Artificial Intelligence – Scope and Limitations. Retrieved from https://doi.org/10.5772/intechopen.84624.
Ingham, L. (2020). Blockchain renewable energy trading creates path for Microgrid Electricity. Verdict. Retrieved from https://www.verdict.co.uk/blockchain-renewable-energy-trading/
Jin, D., Ocone, R., Jiao, K., & Xuan. (2020). Energy and AI. Energy and AI, 1, 100002. https://doi.org/10.1016/j.egyai.2020.100002.
Karpenko, L., Serbov, M., Kwilinski, A., Makedon, V., & Drobyazko, S. (2018). Methodological platform of the control mechanism with the energy saving technologies. Academy of Strategic Management Journal, 17, 1-7.
Kuzior, A., & Sira, M. (2022). A bibliometric analysis of blockchain technology research using VOSviewer. Sustainability, 14(13), 8206. https://doi.org/10.3390/su14138206.
Kuzior, A., Kwilinski, A., & Hroznyi, I. (2021). The factorial-reflexive approach to diagnosing the executors’ and contractors’ attitude to achieving the objectives by energy supplying companies. Energies, 14(9), 2572. https://doi.org/10.3390/en14092572.
Kuzior, A., Postrzednik-Lotko, K. A., & Postrzednik, S. (2022). Limiting of carbon dioxide emissions through rational management of pro-ecological activities in the context of CSR assumptions. Energies, 15(5), 1825. https://doi.org/10.3390/en15051825 .
Kuzior, A., & Staszek, M. (2021). Energy management in the railway industry: A case study of rail freight carrier in Poland. Energies, 14(21), 6875. https://doi.org/10.3390/en14216875
Kwilinski, A. (2019). Implementation of blockchain technology in accounting sphere. Academy of Accounting and Financial Studies Journal, 23, 1-6.
Lee, D., Chen, Y.T., & Chao, S.L. (2022). Universal workflow of artificial intelligence for energy saving. Energy Reports, 8, 1602-1633. https://doi.org/10.1016/j.egyr.2021.12.066.
Lee, D., Huang, H.Y., Lee, W.S., & Liu, Y. (2020). Artificial intelligence implementation framework development for building energy saving. International Journal of Energy Research, 44(14), 11908-11929. https://doi.org/10.1002/er.5839.
Lyulyov, O., Pimonenko, T., Kwilinski, A., Dzwigol, H., Dzwigol-Barosz, M., Pavlyk, V., & Barosz, P. (2021). The impact of the government policy on the energy efficient gap: The evidence from Ukraine. Energies, 14(2), 373. https://doi.org/10.3390/en14020373.
Makala, B., & Bakovic, T. (2020). Artificial Intelligence in the Power Sector. EMCompass, 81, 1-8. Retrieved from: http://hdl.handle.net/10986/34303.
Makieła, Z. J., Kinelski, G., Stęchły, J., Raczek, M., Wrana, K., & Michałek, J. (2022). Tools for network smart city Management—The case study of potential possibility of managing energy and associated emissions in metropolitan areas. Energies, 15(7), 2316. https://doi.org/10.3390/en15072316.
Marinakis, V., Koutsellis, T., Nikas, A., & Doukas, H. (2021). AI and Data Democratisation for Intelligent Energy Management. Energies, 14(14), 4341. https://doi.org/10.3390/en14144341.
Mediwaththe, C. P., Stephens, E. R., Smith, D. B., & Mahanti, A. (2016). A Dynamic Game for Electricity Load Management in Neighbourhood Area Networks. IEEE Transactions on Smart Grid, 7(3), 1329-1336. https://doi.org/10.1109/tsg.2015.243889.
Merz, M. (2020). Enerchain. Retrieved from https://enerchain.ponton.de/index.php/articles
Merz, M. (n.d.-a). Gridchain – blockchain-based process integration for the smart grids of the future. Enerchain. Retrieved from https://enerchain.ponton.de/index.php/16-gridchain-blockchain-based-process-integration-for-the-smart-grids-of-the-future
Merz, M. (n.d.-b). Decentrally traded Decentral Energy. Enerchain. Retrieved from: https://enerchain.ponton.de/
Miśkiewicz, R., Rzepka, A., Borowiecki, R., & Olesiński, Z. (2021). Energy Efficiency in the Industry 4.0 Era: Attributes of Teal Organisations. Energies, 14(20), 6776. https://doi.org/10.3390/en14206776.
Mortier, T. (2020). Why Artificial Intelligence is a game-changer for renewable energy. EY. Retrieved from https://www.ey.com/en_gl/power-utilities/why-artificial-intelligence-is-a-game-changer-for-renewable-energy
Nai Fovino, I., Soupionis, I., Martin, T., Kounelis, I., Marinopoulos, A., Andreadou, N., Giuliani, R., Steri, G., Geneiatakis, D., Lucas, A., & Poursanidis, I. (2021). Blockchain in the energy sector. WP3, use cases identification and analysis. Publications Office of the European Union. Retrieved from https://op.europa.eu/en/publication-detail/-/publication/45ec9a37-58a3-11ec-91ac-01aa75ed71a1/language-en
IEA. (n.d.-b). Net Zero Emissions by 2050 Scenario (NZE). Retrieved from https://www.iea.org/reports/world-energy-model/net-zero-emissions-by-2050-scenario-nze
Ogawa, D., Kobayashi, K., & Yamashita, Y. (2021). Effectiveness and Limitation of Blockchain in Distributed Optimization: Applications to Energy Management Systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E104, A(2), 423-429. https://doi.org/10.1587/transfun.2020MAI0001.
Parekh, N., Kurian, J., Patil, R., & Gautam, R. (2022). Influencing factors and challenges to energy management and energy efficiency for chemical process SMEs in India. Materials Today: Proceedings, 57, 1745-1754. https://doi.org/10.1016/j.matpr.2021.12.378.
Pestle Analysis: Factsheets. CIPD. (2021). Retrieved from https://www.cipd.co.uk/knowledge/strategy/organisational-development/pestle-analysis-factsheet
Powerledger wins award for its distributed solar electricity project in UP. Saur Energy International. (2022). Retrieved from https://www.saurenergy.com/solar-energy-news/powerledger-wins-award-for-its-distributed-solar-electricity-project-in-up
Sadamori, K., & Motherway, B. (2021). Energy Efficiency 2021. IEA Publications: 103 p.
Samusevych, Y., Vysochyna, A., Vasylieva, T., Lyeonov, S., & Pokhylko, S. (2021). Environmental, energy and economic security: Assessment and interaction. E3S Web of Conferences, 234, 00012.
Schletz, M., Cardoso, A., Prata Dias, G., & Salomo, S. (2020). How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison. Energies, 13(22), 5869. https://doi.org/10.3390/en13225869.
Serpell, O. (2018). Energy and the blockchain: Opportunities and challenges for climate and Energy Governance. Kleinman Center for Energy Policy. Retrieved from https://kleinmanenergy.upenn.edu/research/publications/energy-and-the-blockchain-opportunities-and-challenges-for-climate-and-energy-governance/
T'Serclaes, P. (2017). How blockchain can make the world more energy efficient. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2017/09/blockchain-energy-efficiency-finance/
United Nations. (n.d.). SDG indicators - SDG indicators. United Nations. Retrieved from: https://unstats.un.org/sdgs/metadata/?Text=&Goal=7&Target
Powerledger Energy Projects. (n.d.). Uttar Pradesh Government, India. Retrieved from: https://www.powerledger.io/clients/uttar-pradesh-government-india#NumberSection
Vasylieva, T., Pavlyk, V., Bilan, Y., Mentel, G., & Rabe, M. (2021). Assessment of energy efficiency gaps: The case for Ukraine. Energies, 14(5), 1323. https://doi.org/10.3390/en14051323.
Vlachos, I., Lima, C., Cali, U., Lin, J., Gindroz, B., Schlegel, W., Möhr, L., Mühlethaler, J., Ruslanova, M., Henderson, J., Sprunk, R., Kelly, I., Roon, M., Gehain, E., Zelazny, S., Schmied, K., Zuijderduijn, A., Schrieder, M., Wiethe, C., … Tiwari, V. (2022). Blockchain Applications in the Energy Sector. EU Blockchain. Retrieved from https://www.eublockchainforum.eu/sites/default/files/reports/EUBOF-Thematic_Report_Energy_Sector.pdf
Wang, L., Jiao, S., Xie, Y., Mubaarak, S., Zhang, D., Liu, J., Jiang, S., Zhang, Y., & Li, M. (2021). A permissioned blockchain-based energy management system for renewable energy microgrids. Sustainability, 13(3), 1317. https://doi.org/10.3390/su13031317
Wang, T., Hua, H., Wei, Z., & Cao, J. (2022). Challenges of blockchain in new generation energy systems and future outlooks. International Journal of Electrical Power & Energy Systems, 135, 107499. https://doi.org/10.1016/j.ijepes.2021.107499
S&P Global Commodity Insights. (n.d.). World's first high-frequency decentralized energy market helps drive port of Rotterdam's energy transition. Retrieved from https://www.spglobal.com/commodityinsights/en/about-commodityinsights/media-center/press-releases/2020/051020-world-s-first-high-frequency-decentralized-energy-market-drive-port-of-rotterdam-energy-transition
Yang, Q., Wang, H., Wu, X., Wang, T., & Zhang, S. (2021). Blockchain for Transactive Energy Management of Distributed Energy Resources in smart grid. Proceedings of the Twelfth ACM International Conference on Future Energy Systems. Association for Computing Machinery (ACM): USA, 211-215. https://doi.org/10.1145/3447555.3464848.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.